Homogenization of a Periodic Degenerate Semilinear Elliptic Pde

نویسندگان

  • Étienne Pardoux
  • Ahmadou Bamba Sow
  • A. B. Sow
چکیده

In this paper a semilinear elliptic PDE with rapidly oscillating coefficients is homogenized. The novetly of our result lies in the fact that we allow the second order part of the differential operator to be degenerate in some portion of Rd. Our fully probabilistic method is based on the connection between PDEs and BSDEs with random terminal time and the weak convergence of a class of diffusion processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogenization of periodic semilinear parabolic degenerate PDEs

In this paper a second order semilinear parabolic PDE with rapidly oscillating coefficients is homogenized. The novelty of our result lies in the fact that we allow the second order part of the differential operator to be degenerate in some part of Rd . Our fully probabilistic method is based on the deep connection between PDEs and BSDEs and the weak convergence of a class of diffusion processe...

متن کامل

[hal-00359844, v1] Homogenization of periodic semilinear parabolic degenerate PDEs

(a) LERSTAD, UFR S.A.T, Université Gaston Berger, BP 234, Saint-Louis, SENEGAL. email : [email protected] (b) CEREMADE, Université Paris-Dauphine, Place du maréchal De Lattre de Tassigny, 75775 Paris cedex 16, FRANCE. email : [email protected] (c) CMI, LATP-UMR 6632, Université de Provence, 39 rue F. Joliot Curie, 13453 Marseille cedex 13, FRANCE. email : [email protected] Abstr...

متن کامل

Periodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations

We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.

متن کامل

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Automated bifurcation Analysis for Nonlinear Elliptic Partial Difference Equations on Graphs

We seek solutions u ∈ R to the semilinear elliptic partial difference equation −Lu+ fs(u) = 0, where L is the matrix corresponding to the Laplacian operator on a graph G and fs is a one-parameter family of nonlinear functions. This article combines the ideas introduced by the authors in two papers: a) Nonlinear Elliptic Partial Difference Equations on Graphs (J. Experimental Mathematics, 2006),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010